SOFTWARE SYSTEMS USED FOR UNSTRUCTURED GRID GENERATION AT NASA LANGLEY

MICHAEL J. BOCKELIE COMPUTER SCIENCES CORPORATION

OVERVIEW

- o Grid Generation Systems For 3D Configurations (Euler Grids)
 - o VGRID

(NASA / LaRC)

o **FELISA**

(Swansea College, UK)

o **TETRA**

(CDC/ICEM)

o NGP

(National Grid Project / Mississippi State University)

o TGRID

(Creare / RAMPANT)

- o Special Purpose (Research) Grid Generators
 - o Viscous and Inviscid
 - o Solution Adaptive For Steady and Unsteady Flows

CRITERIA

- o User Orientation
- o Type of Software System
- o Surface Defintion
- o Grid Generation Method
- o User Interface
- o "Computational Time " to generate 100K Cell Grid

- SGI IRIS / 4D with 50 MHz R4000 64 Bit CPU + 128 MB

NEW VGRID

- o Most Widely Used System For 3D Configurations
 - User Support / Training + Expert Users Available Locally
 - Tested On Many Configurations
- o NOT an Integrated System ==> Collection of Individual Codes
 - Requires User with CFD Training (Engineer)
- o Surface Definition: NURBS !! NEW!!
 - INPUT: Point or NURBS Surface Data
- o Grid Generation Method: Advancing Front (Lohner, Parikh, Pirzadeh)
 - Node Spacing Data: Point / Line Sources
 - Surface Grid: Generated on Bi Linear Surface Patch Approximation of Object and then Projected to NURBS Surface.
- o Graphical User Interface ==> !!! NEW !!!
 - Create Surface Patches, Source Terms, Flow Solver BC's
 - "T" Connections for Patches
- o 100K Cell Grid => 12 CPUM

FELISA

- o Small User Base
 - Limited User Support
- NOT an Integrated System ==> Collection of Individual Codes
 Requires CFD Engineer
- Surface Definition: Networks of Bi-Cubic Hermite Patches
 - INPUT: Point Data
- o Grid Generation Method: Advancing Front (Morgan & Peraire)
 - Node Spacing Data: Point / Line / Triangle Sources
 - Surface Grid: Generated on Bi-Cubic Surface in Uniform Parameter Space
 # best looking (prettiest) surface grids in open literature
- o No Graphical User Interface ==> Difficult To Set Up Problems
 - modify VGRID Interface To Output Required Data ?
- o 100K Cell Grid => 25 CPUM

TETRA

- o Very Small User Base for ICEM / TETRA Module
 - Expert Users + Strong Support Locally for other ICEM Modules
- o Grid Generator Fully Integrated Into CAD / CAE Environment
 - Grid Generator Sits On Top Of Full CAD
 - Commercial Grade Software System With Good Customer Support
 - Grid Topologies: Unstructured / Structured / Cartesian / Body Fitted Cartesian
 - Grid Smoothing, Visualization and Flow Solver Output Modules
 - Oriented For Engineering Technician (CFD training useful NOT required)

- o Surface Definition : NURBS
 - INPUT: Point / CAD (IGES) / NURBS Data

- o Grid Generation Method: Octree
 - Node Spacing Data: specify values for surfaces / curves
 - Surface Grid: must be cut out of volume grid => "noisy "surface grids # need to asses if grid quality is adequate for Aerospace CFD
- User Interface => easy to use but can be confusing for non CAD user
- o 100K Cell Grid => 17 CPUM

Configuration, Utility Applications	Viewers	Translation	Output	Help*	G2
Configuration: om6 split		Solver:			
Geometry: parts mesh		Smoother:	Tetra		
Part: OMG Sheet: I					***************************************
Micca					
Copy part Move part Delete part Uns	lect com	ent part			,
DDN Parts		on accommon and the		Maria de la composición de	niro#8000.
DDN Parts		Project Par			
		OM6 (1)			
		0.000.000.000			
	- 14				
Welcome to the ICEM CFD/CAE Manage	er 3.0 103	L1 for ICEM C	FD Versi	on 3 I	
For help on using this program, type ?, or Partitle is now mulcad/om6_split/parts_m	select a to	pic from the h	elp menu		state de la companya
Partfile is now mulcad/om6_split/parts_m	esh/parts	/om6_11ynm&)		
					AND PROPERTY.

DISPLAYING MENUS

ONERA M6 WING

Flow Conditions : M_{OO} = 0.84 , α = 3.04 $^{\circ}$ Solution Computed With USM3D Displayed Is Grid On Wing Upper Surface

Grid Generated with ICEM / TETRA 185K cells overall, 5.8K cells on wing

ONERA M6 WING

Flow Conditions : $M_{QQ} = 0.84$, $\alpha = 3.04$ $^{\circ}$ Solution Computed With USM3D Displayed Is Normalized Pressure (P/P₀₀) On Wing Upper Surface (contours: $\Delta P/P_{00} = 0.02$)

Grid Generated with ICEM / TETRA 185K cells overall, 5.8K cells on wing

NGP

- Very, Very Small User Base
 - Code Still In Development => next release in August 1993
- Fully Integrated Into CAD / CAE Environment
 - Sits On Top of "mini" CAD System
 - Grid Topologies: Unstructured / Structured (automatic blocking)
 - Grid Visualization and Flow Solver Output Modules
 - Oriented For Engineering Technician (CFD training useful NOT required)
- Surface Definition: NURBS
 - INPUT: Point / CAD (IGES) / NURBS Data
- Grid Generation Method: Delaunay (Weatherill)
 - Node Spacing: Now => specify distributions on curves, Future => sources (?)
 - Surface Grid: a) generate on NURBS surface using combination of data in physical and uniform parameter space b) surface grid must be recovered in final volume grid
- User Interface => very clean and easy to use
- 100K Problem => 2 CPUM (estimated from values reported in literature)

CONCLUSIONS

- o Wide Variety Of Unstructured Grid Generation Tools Available and In Use At NASA / LaRC
- o VGRID Is Clearly The Most Widely Used Code For 3D Applications

WHY?

- customer oriented user support available on site
- can generate CFD quality grids in "reasonable" time
- graphical interface available
 - => new interface and improved surface definition will increase use

o FUTURE

Tool Requirements:

- integrated into NURBS based CAD / CAE environment
- customer oriented and have local support
- designed for use by non CFD expert (e.g., engineering tech)
- simple to use and have user friendly graphical interface
- provide fast turnaround :
 - => reduce / automate data required for grid generation module
 - => improve grid generation algorithms

VISUALIZATION

- General Purpose Grid and Solution Visualization Tools
 - FAST
 - VPLOT3D
 - VISUAL3

- TECPLOT (surface grids only)

- SURFACE (surface grids only)

- DEMAC

(surface grids and advancing front)

note:

FAST, VPLOT3D & SURFACE contain visualization tools for grid quality

Special Purpose Grid and Solution Visualization Tools 0

SPECIAL PURPOSE GRID GENERATORS

- Inviscid
 - 2D => several codes in use
 - 3D => research codes in development
- Viscous
 - 2D => couple research codes in use
 - 3D => "in development"
 - # prismatic element grids being investigated
- Solution Adaptive
 - several research codes available for 2D / 3D steady and unsteady flow # primarily h refinement and redistribution methods
 - general purpose (production) codes not yet available

TGRID

- o Small (?) User Base
- o Not A Fully Integrated System
 - Module Within Creare / RAMPANT Flow Solver System
- o Surface Definition: N/A
 - ONLY Generates Volume Grid
- o Grid Generation Method: Delaunay (Blake & Spragle)
 - Node Spacing: computed from given surface grid
 - Surface Grid: a) must be computed in another software package
 - b) surface grid must be recovered from final volume grid
 - c) volume grid highly dependent on quality of surface grid
- o User Interface => ?
- o 100K Cell Grid => 4 (?) CPUM (estimated from values reported in literature)